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INTRODUCTION

ABSTRACT

Aims/Introduction: Caloric excess and physical inactivity fail to fully account for the
rise of diabetes prevalence. Individual environmental pollutants can disrupt glucose home-
ostasis and promote metabolic dysfunction. However, the impact of cumulative exposures
on diabetes risk is unknown.

Materials and Methods: The Environmental Quality Index, a county-level index com-
posed of five domains, was developed to capture the multifactorial ambient environmen-
tal exposures. The Environmental Quality Index was linked to county-level annual age-
adjusted population-based estimates of diabetes prevalence rates. Prevalence differences
(PD, annual difference per 100,000 persons) and 95% confidence intervals (Cl) were esti-
mated using random intercept mixed effects linear regression models. Associations were
assessed for overall environmental quality and domain-specific indices, and all analyses
were stratified by four rural-urban strata.

Results: Comparing counties in the highest quintile/poorest environmental quality to
those in the lowest quintile/best environmental quality, counties with poor environmental
quality demonstrated lower total diabetes prevalence rates. Associations varied by rural—
urban strata; overall better environmental quality was associated with lower total diabetes
prevalence rates in the less urbanized and thinly populated strata. When considering all
counties, good sociodemographic environments were associated with lower total diabetes
prevalence rates (prevalence difference 2.77, 95% confidence interval 2.71-2.83), suggesting
that counties with poor sociodemographic environments have an annual prevalence rate
2.77 per 100,000 persons higher than counties with good sociodemographic environ-
ments.

Conclusions: Increasing attention has focused on environmental exposures as contrib-
utors to diabetes pathogenesis, and the present findings suggest that comprehensive
approaches to diabetes prevention must include interventions to improve environmental

quality.

failure and non-traumatic amputations, as well as a potent con-

The prevalence of diabetes has increased dramatically over the
past several decades, with the disease now afflicting >30 million
people in the USA, and an additional 84 million individuals
with prediabetes at risk of progressing to diabetes in the com-
ing years'. As the leading cause of adult blindness, kidney
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tributor to cardiovascular disease, diabetes exerts a tremendous
toll on individual morbidity and mortality’. Furthermore, this
generates a significant societal burden, as the annual economic
costs associated with diagnosed diabetes exceed $327 billion in
the USA alone, with significant deterioration in the quality of
life for affected individuals and their families™.

Despite abundant evidence that caloric excess and physical
inactivity superimposed on a susceptible genetic background
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drive diabetes pathogenesis, these factors alone fail to fully
account for the rapid rise of diabetes prevalence both nationally
and internationally’. As such, increasing attention has turned to
additional contributors to diabetes pathogenesis, including the
impact of exposure to environmental pollutants. In fact, dia-
betes rates in the USA are tightly correlated with the produc-
tion and environmental distribution of synthetic chemicals®.
Studies have shown that various pollutants can disrupt glucose
homeostasis and promote metabolic dysfunction®®, These dia-
betogenic agents span a broad range of chemical classes and
routes of exposure. Importantly, levels and intentional use of
these toxicants can vary across communities and regions.

In addition, diabetes prevalence shows regional variation across
the USA.” Variations in the use of and exposure to various chem-
icals might contribute to the geographic variability of diabetes
prevalence. Chemicals that have been associated with metabolic
dysfunction include compounds found in the home (e.g., flame
retardants, bisphenol A and phthalates'®™"*), used occupationally
(e.g. pesticides'™'®), and that arise from local industrial practices
and urbanization (e.g, air pollutants'’). Additionally, environ-
mental pollutants associated with diabetes have been shown to
disproportionately affect minority communities'®. Thus, based
on differences in the national distribution of chemical-intensive
practices and other regional factors, toxicant exposures might
contribute to geographical variation in diabetes rates.

Although in rare cases isolated exposure to a single chemical
is sufficient to drive diabetes development'®; it is much more
likely that multiple exposures, coupled with additional risk fac-
tors, are required to drive diabetes pathogenesis®’. Epidemiolog-
ical research traditionally focuses on single environmental
exposures. The burden of cumulative, or simultaneous, environ-
mental exposures on diabetes risk has not been systematically
examined. To capture multifactorial ambient environmental
exposures, the Environmental Quality Index (EQI) was devel-
oped. The publicly available EQI is a county-level measure of
cumulative ambient environmental exposures for the USA for
the period 2000-2005>". The index was constructed to provide
overall EQI, as well as domain-specific indices for all counties
in the USA. Accounting for the proposed 5-10-year lag period
between diabetes onset and diagnosis™ **, we used the EQI to
assess the burden of cumulative environmental exposures on
diabetes prevalence in the USA. We examined county-level dia-
betes prevalence for 20042012 in association with the EQL
We also considered associations with domain-specific indices to
assess which domains, if any, drive associations with diabetes
prevalence. In addition, it is known that factors that influence
environmental quality vary in rural and urban areas; therefore,
all analyses were also stratified by rural-urban status.

METHODS

Study population

Population-based county-level estimates for diagnosed (DDP),
undiagnosed (UDP) and total diabetes prevalence (TDP) were
downloaded from the Institute for Health Metrics and

http://wileyonlinelibrary.com/journal/jdi

Evaluation for the years 2004-2012%°. Prevalence estimates were
calculated using a two-stage approach. The first stage used
National Health and Nutrition Examination Survey data to pre-
dict high fasting plasma glucose (FPG) levels (=126 mg/dL)
and/or hemoglobin Alc (HbAlc) levels (>6.5% [48 mmol/
mol]) based on self-reported demographic and behavioral char-
acteristics®®. This model was then applied to Behavioral Risk
Factor Surveillance System (BRFSS) data to impute high FPG
and/or HbAlc status for each BRESS respondent®®. The second
stage used the imputed BRFSS data to fit a series of small area
models, which were used to predict the county-level prevalence
of each of the diabetes-related outcomes®. Diagnosed diabetes
was defined as the proportion of adults (aged >20 years) who
reported a previous diabetes diagnosis, represented as an age-s-
tandardized prevalence percentage. Undiagnosed diabetes was
defined as the proportion of adults (aged >20 years) who had a
high FPG or HbAlc, but did not report a previous diagnosis of
diabetes. Total diabetes was defined as the proportion of adults
(aged >20 years) who reported a previous diabetes diagnosis
and/or had a high FPG/HbAlc. The age-standardized diabetes
prevalence (%) was used as the outcome.

Exposure data: The EQI
The EQI was used as an exposure metric as an indicator of
cumulative environmental exposures at the county-level repre-
senting the period 2000-2005. The EQI includes variables repre-
senting each of five environmental domains: air, water, land,
built environment and sociodemographic. A complete descrip-
tion of the datasets used in the EQI is provided in Lobdell
et al”’., and methods used for index construction are described
by Messer et al’®. Briefly, domain-specific indices (air index,
water index etc.) were created by retaining the first component
of a principal components analysis that included all of the
domain-specific variables. Examples of variables included in each
domain are provided in Table 1. The EQI was then created by
retaining the first component of a principal components analysis
that combined the domain-specific indices. Recognizing that
environments differ across the rural-urban continuum, the EQI
and domain-specific indices construction were stratified by
rural-urban continuum codes (RUCC)%. We utilized four cate-
gories for which RUCCI represents metropolitan urbanized;
RUCC2 non-metro urbanized; RUCC3 less urbanized; and
RUCCH4 thinly populated, which have been used in previous
health analyses® >, Finally, we have six non-stratified indices
(one overall EQI and five domain-specific indices) and six corre-
sponding indices for each of the four RUCC strata. This allows
for assessment of cumulative environmental exposure, domain-
specific drivers and rural-urban variations. For the domain-
specific analysis, we valence corrected the domain-specific indices
to ensure that the directionality of the variables was consistent
with higher values suggesting poorer quality (more pollution).
The Institute for Health Metrics and Evaluation diabetes
prevalence data was merged with the EQI data by county
name, state and county Federal Information Processing
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Table 1 | Select variables that represent each domain of the Environmental Quality Index

Domain Example variables

Air Criteria and hazardous air pollutant concentrations, particulate matter concentration, sulfur dioxide, chlorine

Water Contaminant concentrations, drought status, number of discharge permits, water withdrawals for industrial uses

Land Percentage of land in wheat crops, insecticide-treated crops, count of superfund sites and brownfields, mean arsenic

from sediment samples
Sociodemographic
crime rate

Median household income, percentage of individuals with less than a high school education, violent crime rate, property

Built Density of fast food restaurants, percentage of all roadways that are highways, density of fatal accidents, density of

public housing units

Standards code. There were spelling differences between the
Institute for Health Metrics and Evaluation and the EQI data;
however, once the differences were fixed, just seven counties
(four in Alaska, one in South Dakota and two in Virginia) were
excluded from the final analysis (n = 3,134 counties), as they
did not have corresponding EQI data available.

Covariates

County-level data on obesity and leisure time physical inactivity
for 20042012 were downloaded from the Centers for Disease
Control and Prevention” to use as covariates in analyses. These
values are estimated from the BRFSS data using Bayesian meth-
ods to statistically model estimates utilizing data from sur-
rounding counties to strengthen estimates for individual

counties>.

Statistical analysis
We used a random intercept mixed effect linear model, with
state as a fixed effect, to estimate the fixed effects of EQI quin-
tiles and environmental domain-specific quintiles on diabetes
prevalence annually. We carried out analyses using quintiles,
which allows for more meaningful interpretation (between areas
of good [1], moderate [3] and poor [5] environmental quality,
for instance). We considered three diabetes outcomes: DDP,
UDP and TDP. In addition, we adjusted for county-level
covariates of obesity prevalence and leisure time physical inac-
tivity prevalence.

Results are reported as both overall and individual year
annual prevalence differences (PD) with the 95% confidence

intervals (CI) comparing the highest quintile/worst environ-
mental quality with the lowest quintile/best environmental qual-
ity for all three outcomes, diagnosed, undiagnosed and total
diabetes. Overall PDs are representative of the entire period of
interest, 2004-2012, whereas individual annual PDs are repre-
sentative of a single year (2004, 2005, 2006, etc.). All analyses
were stratified by four rural-urban continuum codes to assess
associations by urbanicity. Analyses were carried out using R
(R Foundation for Statistical Computing, Vienna, Austria) and
SAS (v9.4; SAS Institute, Cary, NC, USA) statistical software.
Internal review board approval was not required, as the data
are all secondary and aggregated at the county-level.

RESULTS

Population description

There were a total of 3,134 counties represented in the analysis.
Of these, 34.7% (n = 1,088) were metropolitan-urbanized
(RUCC1), 10.3% (323) were non-metropolitan urbanized
(RUCC2), 33.7% (1,056) were less-urbanized (RUCC3) and
21.3% (667) were thinly populated (RUCC4). This mirrors the
RUCC distribution of all USA counties, which is also 34%
RUCCI, 10% RUCC2, 34% RUCC3 and 21% RUCC4. The
average annual county-level diagnosed, undiagnosed and total
diabetes prevalence rates were 9.61 per 100,000 population
(standard deviation 2.09), 3.85 per 100,000 population (stan-
dard deviation 0.42) and 13.58 per 100,000 population (stan-
dard deviation 2.44), respectively. The mean and standard
deviations of DDP, UDP and TDP varied across rural-urban
strata (Table 2).

Table 2 | County-level mean and standard deviation for all years 2004-2012 for all counties and stratified by rural-urban status

Outcome All counties Metropolitan-urbanized Non-metropolitan-urbanized Less urbanized  Thinly populated (RUCC4)
(RUCCY) (RUCCY) (RUCC3)

Diagnosed diabetes 961 £+ 209 950 £ 1.83 974 + 204 986 + 221 933 £ 223

Undiagnosed diabetes 385 £ 042 390 £ 038 393 £ 042 407 £ 047 398 £ 046

Total diabetes 1358 + 244 1340 + 2.14 1367 + 240 1392 + 259 1331 £ 258

RUCG, rural-urban continuum code; RUCCT, metropolitan-urbanized counties; RUCC2, Non-metropolitan-urbanized counties; RUCC3, less-urbanized

counties; RUCC4, thinly populated counties.
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Overall, poor cumulative environmental quality, controlling
for obesity and leisure time physical inactivity, was associated
with lower TDP rates for all counties (PD —1.36, 95% CI —1.43,
—1.28, comparing counties with the worst environmental quality
with counties with the best environmental quality; Figure 1;
Table S1). Similarly, lower DDP and UDP rates were associated
with poor cumulative environmental quality (Figures S1,S2).
The results with cumulative environmental quality and TDP
varied by rural-urban status (summarized in Table 3). In the
metropolitan-urbanized strata, the association was null (PD
0.07, 95% CI —0.03, 0.17); however, in the less urbanized (PD
2.58, 95% CI 2.46, 2.71) and thinly populated (PD 2.88, 95%
CI 2.74, 3.01) strata, poor cumulative environmental quality
was associated with higher TDP rates. Similarly, UDP and
DDP showed varying results with cumulative environmental
quality in the metropolitan-urbanized and non-metro urbanized

http://wileyonlinelibrary.com/journal/jdi

strata, but poor cumulative environmental quality was associ-
ated with higher UDP and DDP rates in the less urbanized
and thinly populated strata (Figures S3,54).

For all counties, associations with TDP varied across
domains (summarized in Table 3); water and land showed
inverse associations; in contrast, air, sociodemographic, and
built environment showed positive associations. The sociode-
mographic domain showed the strongest association with TDP
(PD 2.77, 95% CI 2.71, 2.83, comparing counties with the worst
sociodemographic quality with counties with the best sociode-
mographic quality; Figure 1; Table S1). When considering all
counties, higher DDP rates were associated with poorer air
quality (PD 0.44, 95% CI 0.38, 0.51), poorer sociodemographic
factors (PD 2.24, 95% CI 2.19, 2.29) and worse built environ-
ment factors (PD 0.14, 95% CI 0.10, 0.19; Figure S1), and

higher UDP rates were only associated with poorer
EQI Air Water Land Sociodemographic Built
3
2

Prevalence difference (95% Cl)

1771

3

L 4

Figure 1 | Total diabetes prevalence differences with 95% confidence intervals (Cl) for all counties by quintiles, with the lowest quintile (quintile 1)
or best environmental quality as the reference, with worsening environmental quality increasing left to right for Environmental Quality Index (EQI)
and domain-specific indices, controlling for obesity prevalence and leisure time physical inactivity prevalence.
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Table 3 | Summary of results for total diabetes prevalence for overall
environmental quality and by domains for all counties and by rural/
urban strata

Poor Is associated For
with __ rates
of TDP
Overall environmental | All counties
quality (EQI) - RUCCT
| RUCC2
1 RUCC3, RUCC4
Air quality - All counties
1 RUCC1I
- RUCC2
! RUCC3, RUCC4
Water quality - All counties
- RUCCT, RUCC2, RUCC3, RUCC4
Land quality - All counties
- RUCCI, RUCC2, RUCC3, RUCC4
Sociodemographic 1 All counties
environment t RUCC1, RUCC2, RUCC3, RuC4
Built environment - All counties
RUCCT

RUCC2, RUCC3, RUCC4

EQI, Environmental Quality Index; RUCC, rural-urban continuum code;
RUCC1, metropolitan-urbanized counties; RUCC2, Non-metropolitan-ur-
banized counties; RUCC3, less-urbanized counties; RUCC4, thinly popu-
lated counties; TDP, total diabetes prevalence.

sociodemographic factors (PD 0.53, 95% CI 0.52, 0.55) and
worse built environment factors (PD 0.12, 95% CI 0.11, 0.13;
Figure S2).

Similar to overall EQI, associations with domain-specific
indices varied by rural-urban status (Figure 2; Table S2).
Higher TDP rates were associated with poor air quality (PD
0.71, 95% CI 0.62, 0.79) only in the metropolitan-urbanized
strata (Figure 2), and associations with all other domains varied
for the metropolitan-urbanized stratum. Higher TDP rates also
showed associations with poorer sociodemographic quality in
all strata with the strongest association in the thinly populated
strata (PD 3.57, 95% CI 3.46, 3.68). Similar to TDP, higher
DDP rates were associated with poorer sociodemographic qual-
ity in all strata, with the strongest association in the thinly pop-
ulated strata (PD 2.89, 95% CI 2.80, 2.98; Figure S3). Overall,
UDP showed weaker associations across all domains, and all
rural-urban strata compared with TDP and DDP (Figure S4).
For UDP, there were positive associations in the sociodemo-
graphic domain, except in non-metropolitan-urbanized strata,
but the association was weaker than those shown in TDP and
DDP.

Analyses for individual years showed similar patterns to
results for the entire time period for overall EQI and all three
outcomes: TDP (Figure 3; Table S3), DDP (Figure S5) and
UDP (Figure S6). This was also true for analyses by individual
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domains (results not shown). Again, poorer sociodemographic
quality was associated with higher rates for all three outcomes.
For all counties, annual associations between overall EQI and
TDP, DDP and UDP followed a similar pattern as estimates
for the overall time period; diabetes prevalence decreased with
worsening environmental quality. Annual estimates for individ-
ual domains and all three outcomes varied; however, the pat-
terns were similar to those seen for the overall time period.
The air, water, land and built environment domains showed
slightly more positive associations, but PD estimates for all
years were close to null. Annual estimates for the sociodemo-
graphic domain and all three outcomes showed positive associ-
ations for all years.

DISCUSSION

Increasing evidence implicates environmental toxicants in the
pathogenesis of metabolic disease; however, the impact of
cumulative exposures on diabetes risk remains poorly under-
stood. To address this important data gap, we used a compre-
hensive measure of environmental quality derived largely from
publicly available datasets that quantifies environmental risk at
the county-level. Using this index, we found that diabetes
prevalence was not associated with overall, cumulative, environ-
mental quality for all counties in the USA, but associations var-
ied for specific domains and by rural-urban status. Overall
environmental quality was strongly associated with total dia-
betes prevalence in the less urbanized and thinly populated
strata. For all counties, the strongest association was seen in the
sociodemographic domain, which showed an increased total
diabetes prevalence of 2.77 in counties with poor sociodemo-
graphic quality compared with counties with the best sociode-
mographic  quality. Additionally, both diagnosed and
undiagnosed diabetes prevalence were strongly associated with
the sociodemographic domain when considering all counties.
Associations between total diabetes prevalence and sociodemo-
graphic domain varied by rural-urban strata, with the strongest
associations shown in the thinly populated strata.

The present findings suggesting that poor air quality is asso-
ciated with increased diabetes risk in urban areas are consistent
with previous literature examining associations between single
air pollutants and diabetes***'. Consistent with data showing
that changes in air quality can rapidly increase insulin resis-
tance*' *, counseling patients to avoid high levels of air pollu-
tants might be advisable. This includes avoiding exercise near
busy roads or during peak traffic periods, as well as choosing
efficient commuting routes that minimize time spent in heavy
traffic. Additionally, in accordance with data showing that dia-
betes risk is inversely associated with greenery****, encouraging
the extensive planting of trees, shrubs and other plants has the
potential to improve air quality through the plants’ capacity to
filter air pollutants.

The present findings also showed varying associations by
rural-urban status. We found strong associations between total
diabetes prevalence and the sociodemographic domain for all

© 2019 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd
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Figure 2 | Total diabetes prevalence differences with 95% confidence intervals (Cl) for all counties by quintiles, with the lowest quintile (quintile 1)
or best environmental quality as the reference, with worsening environmental quality increasing left to right for Environmental Quality Index (EQI)
and domain-specific indices, controlling for obesity prevalence and leisure time physical inactivity prevalence by rural-urban strata. (a) Metropolitan
Urbanized (rural-urban continuum code 1 [RUCC1]). (b) Non-Metropolitan-Urbanized (RUCC2). (c) Less Urbanized (RUCC3). (d) Thinly Populated

(RUCC4).

counties and in all rural-urban strata. The metropolitan-urban-
ized strata counties with poor sociodemographic environment
showed a 1.73% increase in annual diagnosed diabetes preva-
lence compared with counties with the best sociodemographic
environment; this translates to an estimated increase of 13.84%
over the 8-year study period. The thinly populated counties
showed a 2.89% increase in annual diagnosed diabetes, which
is an estimated increase of 23.12% over the 8-year study period.
Previous studies have shown that drivers of diabetes risk vary
in rural and urban areas**™**. Healthcare access and food inse-
curity have been associated with increased rates of diabetes®”*’.
Additionally, poverty has been shown to be associated with dia-
betes; however, this association is modified by geographic loca-
tion””. We showed increasingly stronger associations with the
sociodemographic domain from the metropolitan-urbanized

strata to the thinly populated strata, suggesting that sociodemo-
graphic drivers of diabetes risk might differ between rural and
urban regions. We also showed positive associations with the
built environment domain in all strata except the metropolitan-
urbanized strata; however, the majority of research on built
environment factors focuses on urban areas.

Although environmental health research has utilized indices
to represent multiple variables with a single quantitative mea-
sure, the EQI is the first to assess exposures across multiple
domains of exposure. Indices have been developed to represent
the built and social environments®>, and to consider mixtures
of air pollutants®. However, environmental exposures occur
simultaneously and work through multiple mechanisms to
result in diabetes. This is the first study, of which we are aware,
to utilize an index of environmental quality to assess the
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Figure 3 | Annual estimates, 20042012, of total diabetes prevalence differences with 95% confidence intervals (Cl) for all counties by quintiles,
with the lowest quintile (quintile 1) or best environmental quality as the reference, with worsening environmental quality increasing left to right for
Environmental Quality Index, controlling for obesity prevalence and leisure time physical inactivity prevalence.

burden of cumulative environmental exposures on diabetes
prevalence.

The EQI is a metric of cumulative environmental exposures
that was developed utilizing publicly available data. However,
environmental data are typically collected for administrative
and regulatory purposes, and therefore might not provide the
spatial and/or temporal coverage to properly assess health out-
comes™. For example, several of the pollutants captured in the
water and land domains are associated with diabetes rates™* >,
yet we did not see positive associations. This might be due to
the data quality for those domains, which is less robust than
for other domains, as it is primarily collected for regulatory
purposes™. Additionally, environmental data better represent
urban areas compared with suburban and rural areas. Several
of the factors included in the exposure metric, as well as the
outcome of county-level diabetes rates, show spatial relation-
ships. We did not account for any spatial associations in our
analyses. These factors might show clustering effects that should
be considered and accounted for in future analyses.

The EQI is an ecological exposure metric that is both a
strength and limitation of the present study. The EQI repre-
sents the period 2000-2005, and reflects exposures occurring
during and before the diabetes prevalence considered in this
analysis. However, the lag period for development of diabetes
due to environmental exposures is not known and might not
be sufficient. Additionally, the ecological nature of this analysis
does not allow us to account for known individual-level

behaviors that are strongly associated with diabetes, such as diet
and exercise. We control for county-level rates of obesity and
physical inactivity that are strongly associated with and on the
causal pathway to diabetes. The inclusion of these factors might
bias the present results to the null, suggesting that they are
stronger drivers of diabetes risk than environmental exposures.
It is also important to note that several environmental pollu-
tants have been linked to obesity risk®, which in turn drives
diabetes risk; therefore, adjustment for obesity rates might
underestimate associations between environmental exposures
and diabetes prevalence. We did consider analyses without
adjusting for rates of obesity and physical inactivity, and they
showed the same trends with slightly higher estimates. Impor-
tantly, as an ecological study, these analyses did not account for
individual-level exposures. As human behavior can dramatically
modify exposure to various environmental toxicants linked to
diabetes risk (e.g., bisphenol A, phthalates, pesticides etc.)” ™",
the present analysis likely underrepresents the contribution of
environmental toxicants to diabetes risk. Further work is
required to illuminate the extent of human exposure to dia-
betes-promoting toxicants in the population.

Despite these limitations, the application of broad ecological
exposure metrics, such as the EQI, provides new insights into
the impact of cumulative environmental exposures. The EQI
considers hundreds of environmental exposures simultaneously
across multiple environmental domains, including the sociode-
mographic environment, which is often neglected when

© 2019 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd
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considering environmental exposures. In addition, we were able
to leverage publicly available exposure and outcome data to
assess relationships between environmental quality and diabetes
prevalence on a national level. These data provide intriguing
insights that should prompt targeted investigations into how
socioeconomic drivers of diabetes vary across the urban-rural
continuum in order to better tailor intervention strategies to
specific communities. In addition, these analyses provide strik-
ing support for the connection between poor air quality and
diabetes risk, particularly in urban areas.
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SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | Total diabetes prevalence differences with 95% confidence intervals for all counties by quintiles of Environmental Qual-
ity Index and domain-specific indices, controlling for obesity prevalence and leisure time physical inactivity prevalence.

Table S2 | Total diabetes prevalence differences with 95% confidence intervals by quintiles of Environmental Quality Index and
domain-specific indices, controlling for obesity prevalence and leisure time physical inactivity prevalence by rural-urban strata
(Metropolitan Urbanized [RUCCI1], Non-Metropolitan Urbanized [RUCC2], Less Urbanized [RUCC3], Thinly Populated
[RUCCH4]).

Table S3 | Annual estimates, 2004-2012, of total diabetes prevalence differences with 95% confidence intervals for all counties by
quintiles of Environmental Quality Index, controlling for obesity prevalence and leisure time physical inactivity prevalence.

Figure S1 | Diagnosed diabetes prevalence differences with 95% confidence intervals for all counties by quintiles (quintile 1, highest
quality [reference], to quintile 5, poor quality) of Environmental Quality Index and domain-specific indices, controlling for obesity
prevalence and leisure time physical inactivity prevalence.

Figure S2 | Undiagnosed diabetes prevalence differences with 95% confidence intervals for all counties by quintiles (quintile 1,
highest quality [reference], to quintile 5, poor quality) of Environmental Quality Index and domain-specific indices, controlling for
obesity prevalence and leisure time physical inactivity prevalence.

Figure S3 | Diagnosed diabetes prevalence differences with 95% confidence intervals for all counties by quintiles (quintile 1, highest
quality [reference], to quintile 5, poor quality) of Environmental Quality Index and domain-specific indices, controlling for obesity
prevalence and leisure time physical inactivity prevalence, by rural-urban strata (A — Metropolitan Urbanized [RUCC1], B — Non-
Metropolitan Urbanized [RUCC2], C — Less Urbanized [RUCC3], D — Thinly Populated [RUCC4]).

Figure S4 | Undiagnosed diabetes prevalence differences with 95% confidence intervals for all counties by quintiles (quintilel, high-
est quality [reference], to quintile 5, poor quality) of Environmental Quality Index and domain-specific indices, controlling for obe-
sity prevalence and leisure time physical inactivity prevalence, by rural-urban strata (A — Metropolitan Urbanized [RUCC1], B —
Non-Metropolitan Urbanized [RUCC2], C — Less Urbanized [RUCC3], D — Thinly Populated [RUCC4]).

Figure S5 | Annual estimates, 20042012, of diagnosed diabetes prevalence differences with 95% confidence intervals for all coun-
ties by quintiles (quintile 1, highest quality (reference), to quintile 5, poor quality) of Environmental Quality Index, controlling for
obesity prevalence and leisure time physical inactivity prevalence.

Figure S6 | Annual estimates, 20042012, of undiagnosed diabetes prevalence differences with 95% confidence intervals for all
counties by quintiles (quintile 1, highest quality [reference], to quintile 5, poor quality) of Environmental Quality Index, controlling
for obesity prevalence and leisure time physical inactivity prevalence.
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